Benchmark Figures on Selected Tasks¶
Setup¶
[1]:
import ast
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
[2]:
# Define color palette
sns.set_theme(
color_codes=True, palette="bright", style="ticks", context="talk", font_scale=1.5
)
[3]:
def load_result(filename):
"""
Loads results from specified file
"""
inputs = open(filename, "r")
lines = inputs.readlines()
ls = []
for line in lines:
ls.append(ast.literal_eval(line))
return ls
def plot_acc(col, ls, pos, n_train, lw=5, quantile=True, ht_mod=False):
if pos == 0:
for i, l in enumerate(ls[pos]):
col.plot(
n_train,
np.mean(l, axis=0),
label=legends[i],
lw=lw,
color=colors[i],
linestyle=styles[i],
)
if quantile:
qunatiles = np.nanquantile(l, [0.25, 0.75], axis=0)
col.fill_between(
n_train,
qunatiles[0],
qunatiles[1],
lw=1,
facecolor=colors[i],
linestyle=styles[i],
alpha=0.3,
)
else:
for i, l in enumerate(ls[pos]):
if ht_mod and i == 3:
if pos == 1:
n_train_mod = range(100, 4100, 100)
l = np.array(l)[:, :40]
elif pos == 2:
n_train_mod = range(100, 35100, 100)
l = np.array(l)[:, :350]
else:
n_train_mod = n_train
col.plot(
n_train_mod,
np.mean(l, axis=0),
lw=lw,
color=colors[i],
linestyle=styles[i],
)
if quantile:
qunatiles = np.nanquantile(l, [0.25, 0.75], axis=0)
col.fill_between(
n_train_mod,
qunatiles[0],
qunatiles[1],
lw=1,
facecolor=colors[i],
linestyle=styles[i],
alpha=0.3,
)
if ht_mod and i == 3:
if pos == 1:
col.plot(
4000,
np.mean(l, axis=0)[-1],
marker="*",
markersize=20,
color="black",
)
elif pos == 2:
col.plot(
35000,
np.mean(l, axis=0)[-1],
marker="*",
markersize=20,
color="black",
)
[4]:
directory = "../benchmarks/results/"
prefixes = ["sdf/", "rf/", "sdt/", "dt/", "ht/", "mf/"]
legends = ["SDF", "DF", "SDT", "DT", "HT", "MF"]
colors = ["r", "b", "r", "b", "g", "y"]
styles = ["-", "-", "--", "--", "-", "-"]
datasets = ["splice", "pendigits", "cifar10"]
ranges = [23, 74, 500]
Accuracy Plot¶
[5]:
prefixes = ["sdf/", "sdt/", "ht/", "mf/"]
legends = ["SDF-100T", "SDF-10T", "SDT", "HT", "MF"]
colors = ["r", "r", "r", "g", "y"]
styles = ["-", "-.", "--", "--", "-."]
[6]:
acc_ls = []
for i, dataset in enumerate(datasets):
acc_l = []
for prefix in prefixes:
if prefix == "sdf/":
acc = load_result(directory + prefix + dataset + "_acc.txt")[:10]
acc_l.append(acc)
acc = load_result(directory + prefix + dataset + "_acc.txt")[10:]
else:
acc = load_result(directory + prefix + dataset + "_acc.txt")[:10]
acc_l.append(acc)
acc_ls.append(acc_l)
[7]:
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(17, 6), constrained_layout=True)
fig.text(0.53, -0.07, "Number of Train Samples", ha="center")
xtitles = ["Splice", "Pendigits", "CIFAR-10"]
ytitles = ["Accuracy", "Virtual Memory (GB)"]
ylimits = [[0, 1], [0, 56]]
yticks = [[0, 0.5, 1], [0, 56]]
for i, col in enumerate(ax):
col.set_xscale("log")
col.set_ylim(ylimits[0])
n_train = range(100, (ranges[i] + 1) * 100, 100)
# Label x axis and plot figures
col.set_title(xtitles[i])
plot_acc(col, acc_ls, i, n_train, ht_mod=True)
# Label y axis
if i % 3 == 0:
col.set_yticks(yticks[0])
col.set_ylabel(ytitles[i])
else:
col.set_yticks([])
fig.align_ylabels(
ax[
:,
]
)
leg = fig.legend(
bbox_to_anchor=(0.53, -0.22),
bbox_transform=plt.gcf().transFigure,
ncol=6,
loc="lower center",
)
leg.get_frame().set_linewidth(0.0)
for legobj in leg.legendHandles:
legobj.set_linewidth(5.0)
plt.savefig("../paper/select_acc_stream.pdf", transparent=True, bbox_inches="tight")
Accuracy Plot for Batch Classifiers¶
[8]:
prefixes = ["sdf/", "sdt/", "rf/", "dt/"]
legends = ["SDF-100T", "SDF-10T", "SDT", "DF-100T", "DF-10T", "DT"]
colors = ["r", "r", "r", "b", "b", "b"]
styles = ["-", "-.", "--", "-", "-.", "--"]
[9]:
acc_ls = []
for i, dataset in enumerate(datasets):
acc_l = []
for prefix in prefixes:
if prefix == "sdf/" or prefix == "rf/":
acc = load_result(directory + prefix + dataset + "_acc.txt")[:10]
acc_l.append(acc)
acc = load_result(directory + prefix + dataset + "_acc.txt")[10:]
else:
acc = load_result(directory + prefix + dataset + "_acc.txt")[:10]
acc_l.append(acc)
acc_ls.append(acc_l)
[10]:
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(17, 6), constrained_layout=True)
fig.text(0.53, -0.07, "Number of Train Samples", ha="center")
xtitles = ["Splice", "Pendigits", "CIFAR-10"]
ytitles = ["Accuracy"]
ylimits = [[0, 1]]
yticks = [[0, 0.5, 1]]
for i, col in enumerate(ax):
col.set_xscale("log")
col.set_ylim(ylimits[0])
n_train = range(100, (ranges[i] + 1) * 100, 100)
# Label x axis and plot figures
col.set_title(xtitles[i])
plot_acc(col, acc_ls, i, n_train)
# Label y axis
if i % 3 == 0:
col.set_yticks(yticks[0])
col.set_ylabel(ytitles[i])
else:
col.set_yticks([])
fig.align_ylabels(
ax[
:,
]
)
leg = fig.legend(
bbox_to_anchor=(0.53, -0.22),
bbox_transform=plt.gcf().transFigure,
ncol=6,
loc="lower center",
)
leg.get_frame().set_linewidth(0.0)
for legobj in leg.legendHandles:
legobj.set_linewidth(5.0)
plt.savefig("../paper/select_acc_batch.pdf", transparent=True, bbox_inches="tight")
Time Plot¶
[11]:
prefixes = ["sdf/", "rf/", "sdt/", "dt/", "ht/", "mf/"]
legends = ["SDF", "DF", "SDT", "DT", "HT", "MF"]
colors = ["r", "b", "r", "b", "g", "y"]
styles = ["-.", "-.", "--", "--", "--", "-."]
[12]:
# Show concatenated mem for batch estimators
concat = True
time_ls = []
for i, dataset in enumerate(datasets):
time_l = []
for prefix in prefixes:
if prefix == "sdf/" or prefix == "rf/":
time = load_result(directory + prefix + dataset + "_train_t.txt")[10:]
else:
time = load_result(directory + prefix + dataset + "_train_t.txt")[:10]
if concat and (prefix == "dt/" or prefix == "rf/"):
for t in time:
for j in range(1, ranges[i]):
t[j] += t[j - 1]
time_l.append(time)
time_ls.append(time_l)
[13]:
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(17, 6), constrained_layout=True)
fig.text(0.53, -0.07, "Number of Train Samples", ha="center")
xtitles = ["Splice", "Pendigits", "CIFAR-10"]
ytitles = ["Wall Time (s)"]
ylimits = [[1e-4, 1e5]]
yticks = [[1e-4, 1e-1, 1e2, 1e5]]
for i, col in enumerate(ax):
col.set_xscale("log")
col.set_yscale("log")
col.set_ylim(ylimits[0])
n_train = range(100, (ranges[i] + 1) * 100, 100)
# Label x axis and plot figures
col.set_title(xtitles[i])
plot_acc(col, time_ls, i, n_train)
# Label y axis
if i % 3 == 0:
col.set_yticks(yticks[0])
col.set_ylabel(ytitles[i])
else:
col.set_yticks([])
fig.align_ylabels(
ax[
:,
]
)
leg = fig.legend(
bbox_to_anchor=(0.53, -0.22),
bbox_transform=plt.gcf().transFigure,
ncol=6,
loc="lower center",
)
leg.get_frame().set_linewidth(0.0)
for legobj in leg.legendHandles:
legobj.set_linewidth(5.0)
plt.savefig("../paper/select_time.pdf", transparent=True, bbox_inches="tight")
Memory Plot¶
[14]:
# Reorder plots
prefixes = ["sdf/", "sdt/", "ht/", "mf/"]
legends = ["SDF", "SDT", "HT", "MF"]
colors = ["r", "r", "g", "y"]
styles = ["-.", "--", "--", "-."]
# Load CIFAR-10 memory records
cifar_mem_l = []
for prefix in prefixes:
cifar_mem = (
np.mean(load_result(directory + prefix + "cifar10_v_m_first.txt")[:10], axis=0)
* 1024
* 1024
* 1024
/ 1000
/ 1000
/ 1000
)
cifar_mem_l.append([cifar_mem])
# Load CIFAR-10 node records
cifar_node_l = []
for prefix in prefixes:
cifar_node = np.mean(
load_result(directory + prefix + "cifar10_n_node.txt")[:10], axis=0
)
cifar_node_l.append([cifar_node])
# Load CIFAR-10 node records
cifar_size_l = []
for prefix in prefixes:
cifar_size = (
np.mean(load_result(directory + prefix + "cifar10_size_first.txt")[:10], axis=0)
/ 1000
/ 1000
/ 1000
)
cifar_size_l.append([cifar_size])
cifar_l = [cifar_size_l] + [cifar_node_l] + [cifar_mem_l]
[15]:
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(19, 6), constrained_layout=True)
plt.margins()
fig.text(0.53, -0.07, "Number of Train Samples", ha="center")
ytitle = ["Classifier Size (GB)", "Number of Nodes", "Training Space (GB)"]
ylimit = [[-0.005, 0.205], [1e-1, 1e7], [0, 20]]
ytick = [[0, 0.1, 0.2], [1e-1, 1e1, 1e3, 1e5, 1e7], [0, 10, 20, 30]]
n_train = range(100, (ranges[2] + 1) * 100, 100)
# cifar_data_mem = 8.0 * 56 / 100 * np.ones(len(n_train))
for i, col in enumerate(ax):
col.set_xscale("log")
if i == 1:
# Make y axis log scale
col.set_yscale("log")
# Label x axis and plot figures
plot_acc(col, cifar_l, i, n_train, quantile=False)
# Label y axis
col.set_ylim(ylimit[i])
col.set_yticks(ytick[i])
col.set_ylabel(ytitle[i])
if i == 0:
# Legend
handles, labels = col.get_legend_handles_labels()
col.legend(handles[::-1], labels[::-1], frameon=False)
plt.savefig(
"../paper/select_cifar_mem_stream.pdf", transparent=True, bbox_inches="tight"
)